标签归档:Nvidia

详解TensorFlow™ GPU 安装

Deep Learning Specialization on Coursera

知道创宇IA-Lab  岳永鹏

TensorFlow™ 是一个开放源代码软件库,用于进行高性能数值计算。借助其灵活的架构,用户可以轻松地将计算工作部署到多种平台(CPU、GPU、TPU)和设备(桌面设备、服务器集群、移动设备、边缘设备等)。TensorFlow™ 最初是由 Google Brain 团队(隶属于 Google 的 AI 部门)中的研究人员和工程师开发的,可为机器学习和深度学习提供强有力支持,并且其灵活的数值计算核心广泛应用于许多其他科学领域。目前TensorFlow™ 有适用于CPU(TensorFlow CPU)和GPU(TensorFlow GPU)的两种安装选择。 有区别于通过pip安装TensorFlow CPU版本,安装TensorFlow GPU还需要更多的底层依赖。

$ pip install tensorflow==1.12

$ pip install tensorflow-gpu==1.12

TensorFlow GPU主要是通过NVIDIA提供的CUDA和cuDNN存取GPU,从而实现比CPU快数十倍的深度学习训练加速能力。本文主要介绍TensorFlow GPU版本的安装和使用。

继续阅读

深度学习主机环境配置: Ubuntu16.04+GeForce GTX 1080+TensorFlow

Deep Learning Specialization on Coursera

Update: 文章写于一年前,有些地方已经不适合了,最近升级了一下深度学习服务器,同时配置了一下环境,新写了文章,可以同时参考: 从零开始搭建深度学习服务器: 基础环境配置(Ubuntu + GTX 1080 TI + CUDA + cuDNN) 从零开始搭建深度学习服务器: 深度学习工具安装(TensorFlow + PyTorch + Torch)

这个系列写了好几篇文章,这是相关文章的索引,仅供参考:

接上文《深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0》,我们继续来安装 TensorFlow,使其支持GeForce GTX 1080显卡。

1 下载和安装cuDNN

cuDNN全称 CUDA Deep Neural Network library,是NVIDIA专门针对深度神经网络设计的一套GPU计算加速库,被广泛用于各种深度学习框架,例如Caffe, TensorFlow, Theano, Torch, CNTK等。

The NVIDIA CUDA® Deep Neural Network library (cuDNN) is a GPU-accelerated library of primitives for deep neural networks. cuDNN provides highly tuned implementations for standard routines such as forward and backward convolution, pooling, normalization, and activation layers. cuDNN is part of the NVIDIA Deep Learning SDK.

Deep learning researchers and framework developers worldwide rely on cuDNN for high-performance GPU acceleration. It allows them to focus on training neural networks and developing software applications rather than spending time on low-level GPU performance tuning. cuDNN accelerates widely used deep learning frameworks, including Caffe, TensorFlow, Theano, Torch, and CNTK. See supported frameworks for more details.

首先需要下载cuDNN,直接从Nvidia官方下载链接选择一个版本,不过下载cuDNN前同样需要登录甚至填写一个简单的调查问卷: https://developer.nvidia.com/rdp/cudnn-download,这里选择的是支持CUDA8.0的cuDNN v5版本,而支持CUDA8的5.1版本虽然显示在下载选择项里,但是提示:cuDNN 5.1 RC for CUDA 8RC will be available soon - please check back again.

屏幕快照 2016-07-17 上午11.17.39

安装cuDNN比较简单,解压后把相应的文件拷贝到对应的CUDA目录下即可:

tar -zxvf cudnn-8.0-linux-x64-v5.0-ga.tgz

cuda/include/cudnn.h
cuda/lib64/libcudnn.so
cuda/lib64/libcudnn.so.5
cuda/lib64/libcudnn.so.5.0.5
cuda/lib64/libcudnn_static.a

sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/
sudo chmod a+r /usr/local/cuda/include/cudnn.h
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*

继续阅读