分类目录归档:深度学习

加速机器学习:从主动学习到BERT和流体标注

Deep Learning Specialization on Coursera

知道创宇IA-Lab  岳永鹏

机器学习模型代码优化是为了获得更高效(时间更少、存储更少、计算规模更大)执行的机器指令和具有更强泛化能力的模型,获得更高效执行的机器指令可以采用多核和高频的CPU计算,以及采用并行计算和向量化计算。而获得具有更强泛化能力的模型不仅仅与选择的模型有关,还与标注数据的数量和质量有关。而数据标注需要大量标注人员从事重复而枯燥的工作,这也必然会增加成本。

本文将介绍主动学习(Active Learning)以及主动学习结合Google今年发布的流体标注(Fluid Annotation)和BERT(Bidirectional Encoder Representation from Transformers)对加速机器学习有什么启示。

继续阅读

谷歌云平台上基于TensorFlow的高级机器学习专项课程

Deep Learning Specialization on Coursera

Coursera近期推了一门新专项课程:谷歌云平台上基于TensorFlow的高级机器学习专项课程(Advanced Machine Learning with TensorFlow on Google Cloud Platform Specialization),看起来很不错。这个系列包含5门子课程,涵盖端到端机器学习、生产环境机器学习系统、图像理解、面向时间序列和自然语言处理的序列模型、推荐系统等内容,感兴趣的同学可以关注:Learn Advanced Machine Learning with Google Cloud. Build production-ready machine learning models with TensorFlow on Google Cloud Platform.

课程链接:http://coursegraph.com/coursera-specializations-advanced-machine-learning-tensorflow-gcp
继续阅读

AI Challenger 2018 文本挖掘类竞赛相关解决方案及代码汇总

Deep Learning Specialization on Coursera

AI Challenger 2018 已近尾声,各赛道top选手已经结束了代码核验,正在准备12月18、19日 AI Challenger 决赛答辩材料的路上。在本年度 AI Challenger 即将尘埃落定之时,这里整理一批目前网上可见的文本挖掘相关赛道的解决方案和代码,欢迎补充,同时感谢github,感谢各位开源的同学。

细粒度用户评论情感分析

在线评论的细粒度情感分析对于深刻理解商家和用户、挖掘用户情感等方面有至关重要的价值,并且在互联网行业有极其广泛的应用,主要用于个性化推荐、智能搜索、产品反馈、业务安全等。本次比赛我们提供了一个高质量的海量数据集,共包含6大类20个细粒度要素的情感倾向。参赛人员需根据标注的细粒度要素的情感倾向建立算法,对用户评论进行情感挖掘,组委将通过计算参赛者提交预测值和场景真实值之间的误差确定预测正确率,评估所提交的预测算法。

貌似是最火爆的一个赛道,Testa 提交队伍有468支,详细介绍请参考该赛道主页:https://challenger.ai/competition/fsauor2018
继续阅读

详解TensorFlow™ GPU 安装

Deep Learning Specialization on Coursera

知道创宇IA-Lab  岳永鹏

TensorFlow™ 是一个开放源代码软件库,用于进行高性能数值计算。借助其灵活的架构,用户可以轻松地将计算工作部署到多种平台(CPU、GPU、TPU)和设备(桌面设备、服务器集群、移动设备、边缘设备等)。TensorFlow™ 最初是由 Google Brain 团队(隶属于 Google 的 AI 部门)中的研究人员和工程师开发的,可为机器学习和深度学习提供强有力支持,并且其灵活的数值计算核心广泛应用于许多其他科学领域。目前TensorFlow™ 有适用于CPU(TensorFlow CPU)和GPU(TensorFlow GPU)的两种安装选择。 有区别于通过pip安装TensorFlow CPU版本,安装TensorFlow GPU还需要更多的底层依赖。

$ pip install tensorflow==1.12

$ pip install tensorflow-gpu==1.12

TensorFlow GPU主要是通过NVIDIA提供的CUDA和cuDNN存取GPU,从而实现比CPU快数十倍的深度学习训练加速能力。本文主要介绍TensorFlow GPU版本的安装和使用。

继续阅读

Andrew Ng 老师新推的通俗人工智能课程以及其他相关资料

Deep Learning Specialization on Coursera

Andrew Ng 老师是我的偶像,他在普及机器学习和深度学习的道路上纵情向前,这不他又在 Coursera 上新推了一门通俗人工智能课程:AI For Everyone(全民AI) :

http://coursegraph.com/coursera-ai-for-everyone

这门课程面向大众进行AI科普,将于2019年年初开课,目前已经可以注册课程。AI不仅适用于工程师,这门非技术性人工智能课程将帮助学习者了解机器学习和深度学习等相关技术,以及将AI应用于自己组织中的问题和机会。 通过这门课程,学习者将会了解当前人工智能可以或者不能做的事情。最后,学习者将了解AI如何影响社会以及我们将如何应对这种技术变革。

AI is not only for engineers. This non-technical course will help you understand technologies like machine learning and deep learning and spot opportunities to apply AI to problems in your own organization. You will see examples of what today’s AI can – and cannot – do. Finally, you will understand how AI is impacting society and how to navigate through this technological change.

If you are a non-technical business leader, “AI for Everyone” will help you understand how to build a sustainable AI strategy. If you are a machine learning engineer or data scientist, this is the course to ask your manager, VP or CEO to take if you want them to understand what you can (and cannot!) do.

继续阅读

深度学习实践:从零开始做电影评论文本情感分析

Deep Learning Specialization on Coursera

最近读了《Python深度学习》, 是一本好书,很棒,隆重推荐。

本书由Keras之父、现任Google人工智能研究员的弗朗索瓦•肖莱(François Chollet)执笔,详尽介绍了用Python和Keras进行深度学习的探索实践,涉及计算机视觉、自然语言处理、生成式模型等应用。书中包含30多个代码示例,步骤讲解详细透彻。由于本书立足于人工智能的可达性和大众化,读者无须具备机器学习相关背景知识即可展开阅读。在学习完本书后,读者将具备搭建自己的深度学习环境、建立图像识别模型、生成图像和文字等能力。

各方面都很好,但是总感觉哪里有点欠缺,后来想想,可能是作者做得太好了,把数据预处理都做得好好的,所以你才能“20行搞定情感分析”,这可能也是学习其他深度学习工具过程中要面临的一个问题,很多工具都提供了预处理好的数据,导致学习过程中只需要调用相关接口即可。不过在实际工作中,数据的预处理是非常重要的,从数据获取,到数据清洗,再到基本的数据处理,例如中文需要分词,英文需要Tokenize, Truecase或者Lowercase等,还有去停用词等等,在将数据“喂”给工具之前,有很多事情要做。这个部分,貌似是当前一些教程有所欠缺的地方,所以才有了这个“从零开始做”的想法和系列,准备弥补一下这个缺失,第一个例子就拿《Python深度学习》这本书第一个文本挖掘例子练手:电影评论文本分类-二分类问题,这也可以归结为一个情感分析任务。

首先介绍一下这个原始的电影评论数据集aclIMDB: Large Movie Review Dataset, 这个数据集由斯坦福大学人工智能实验室于2011年推出,包含25000条训练数据和25000条测试数据,另外包含约50000条没有标签的辅助数据。训练集和测试集又分别包含12500条正例(正向评价pos)和12500负例(负向评价neg)。88集团赠送38彩金数据,更详细的介绍可参考该数据集的官网:http://ai.stanford.edu/~amaas/data/sentiment/, paper: Learning Word Vectors for Sentiment Analysis, 和数据集里的readme。

然后下载和处理这份数据:Large Movie Review Dataset v1.0,下载链接;

http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz

下载之后进行解压:tar -zxvf aclImdb.tar.gz,可以用tree命令看一下aclImdb的目录结构:

tree aclImdb -L 2

继续进入训练集正例的目录看一下: cd aclImdb/train/pos/:

这个里面包含了12500篇英文评论,我们随机打开一个看一下里面的文本内容:

vim 1234_10.txt

I grew up watching this movie ,and I still love it just as much today as when i was a kid. Don't listen to the critic reviews. They are not accurate on this film.Eddie Murphy really shines in his roll.You can sit down with your whole family and everybody will enjoy it.I recommend this movie to everybody to see. It is a comedy with a touch of fantasy.With demons ,dragons,and a little bald kid with God like powers.This movie takes you from L.A. to Tibet , of into the amazing view of the wondrous temples of the mountains in Tibet.Just a beautiful view! So go do your self a favor and snatch this one up! You wont regret it!

继续阅读

BERT相关论文、文章和代码亚美游AMG88汇总

Deep Learning Specialization on Coursera

BERT最近太火,蹭个热点,整理一下相关的亚美游AMG88,包括Paper, 代码和文章解读。

1、Google官方:

1) BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

一切始于10月Google祭出的这篇Paper, 瞬间引爆整个AI圈包括自媒体圈: https://arxiv.org/abs/1810.04805

2) Github: https://github.com/google-research/bert

11月Google推出了代码和预训练模型,再次引起群体亢奋。

3) Google AI Blog: Open Sourcing BERT: State-of-the-Art Pre-training for Natural Language Processing

2、第三方解读:
1) 张俊林博士的解读, 知乎专栏:从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史

我们在AINLP微信公众号上转载了这篇文章和张俊林博士分享的PPT,欢迎关注:

2) 知乎: 如何评价 BERT 模型?

3) 【NLP】Google BERT详解

4) [NLP自然语言处理]谷歌BERT模型深度解析

5) BERT Explained: State of the art language model for NLP

6) BERT介绍

7) 论文解读:BERT模型及fine-tuning

8) NLP突破性成果 BERT 模型详细解读

9) 干货 | BERT fine-tune 终极实践教程: 奇点智能BERT实战教程,在AI Challenger 2018阅读理解任务中训练一个79+的模型。

10) 【BERT详解】《Dissecting BERT》by Miguel Romero Calvo
Dissecting BERT Part 1: The Encoder
Understanding BERT Part 2: BERT Specifics
Dissecting BERT Appendix: The Decoder

3、第三方代码:

1) pytorch-pretrained-BERT: https://github.com/huggingface/pytorch-pretrained-BERT
Google官方推荐的PyTorch BERB版本实现,可加载Google预训练的模型:PyTorch version of Google AI's BERT model with script to load Google's pre-trained models

2) BERT-pytorch: https://github.com/codertimo/BERT-pytorch
另一个Pytorch版本实现:Google AI 2018 BERT pytorch implementation

3) BERT-tensorflow: https://github.com/guotong1988/BERT-tensorflow
Tensorflow版本:BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

4) bert-chainer: https://github.com/soskek/bert-chainer
Chanier版本: Chainer implementation of "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding"

5) bert-as-service: https://github.com/hanxiao/bert-as-service
将不同长度的句子用BERT预训练模型编码,映射到一个固定长度的向量上:Mapping a variable-length sentence to a fixed-length vector using pretrained BERT model
这个很有意思,在这个基础上稍进一步是否可以做一个句子相似度计算服务?有没有同学一试?

6) bert_language_understanding: https://github.com/brightmart/bert_language_understanding
BERT实战:Pre-training of Deep Bidirectional Transformers for Language Understanding: pre-train TextCNN

7) sentiment_analysis_fine_grain: https://github.com/brightmart/sentiment_analysis_fine_grain
BERT实战,多标签文本分类,在 AI Challenger 2018 细粒度情感分析任务上的尝试:Multi-label Classification with BERT; Fine Grained Sentiment Analysis from AI challenger

8) BERT-NER: https://github.com/kyzhouhzau/BERT-NER
BERT实战,命名实体识别: Use google BERT to do CoNLL-2003 NER !

9) BERT-keras: https://github.com/Separius/BERT-keras
Keras版: Keras implementation of BERT with pre-trained weights

10) tbert: https://github.com/innodatalabs/tbert
PyTorch port of BERT ML model

11) BERT-Classification-Tutorial: https://github.com/Socialbird-AILab/BERT-Classification-Tutorial

12) BERT-BiLSMT-CRF-NER: https://github.com/macanv/BERT-BiLSMT-CRF-NER
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning

持续更新,BERT更多相关亚美游AMG88欢迎补充,欢迎关注我们的微信公众号:AINLP

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:

本文链接地址:BERT相关论文、文章和代码亚美游AMG88汇总 /?p=10870

Coursera专项课程推荐:金融中的机器学习和强化学习

Deep Learning Specialization on Coursera

Coursera近期新推了一个金融和机器学习的专项课程系列:Machine Learning and Reinforcement Learning in Finance Specialization(金融中的机器学习和强化学习),看起来很有意思。

课程链接:http://coursegraph.com/coursera-specializations-machine-learning-reinforcement-finance

这个专项课程的主要目标是为金融相关的机器学习核心范式和算法奠定坚实的基础而提供必要的知识和实战技能,特别关注机器学习在金融投资中不同的实际问题中的应用。

该系列旨在帮助学生解决他们在现实生活中可能遇到的实际的机器学习问题,包括:

(1)将问题映射到可用的机器学习方法的泛化场景,

(2)选择最适合解决问题的特定机器学习方法,以及

(3)成功实施解决方案,并评估其性能。

该专业课程面向三类学生设计:

· 在银行,资产管理公司或对冲基金等金融机构工作的从业人员

· 对将机器学习应用于日内交易感兴趣的个人

· 目前正在攻读金融学,统计学,计算机科学,数学,物理学,工程学或其他相关学科的学位的全日制学生,这些学生希望了解机器学习在金融领域的实际应用。
继续阅读

一文详解深度学习在命名实体识别(NER)中的应用

Deep Learning Specialization on Coursera

近几年来,基于神经网络的深度学习方法在计算机视觉、语音识别等领域取得了巨大成功,另外在自然语言处理领域也取得了不少进展。在NLP的关键性基础任务—命名实体识别(Named Entity Recognition,NER)的研究中,深度学习也获得了不错的效果。最近,笔者阅读了一系列基于深度学习的NER研究的相关论文,并将其应用到达观的NER基础模块中,在此进行一下总结,与大家一起分享学习。

1、NER 简介

NER又称作专名识别,是自然语言处理中的一项基础任务,应用范围非常广泛。命名实体一般指的是文本中具有特定意义或者指代性强的实体,通常包括人名、地名、组织机构名、日期时间、专有名词等。NER系统就是从非结构化的输入文本中抽取出上述实体,并且可以按照业务需求识别出更多类别的实体,比如产品名称、型号、价格等。因此实体这个概念可以很广,只要是业务需要的特殊文本片段都可以称为实体。

学术上NER所涉及的命名实体一般包括3大类(实体类,时间类,数字类)和7小类(人名、地名、组织机构名、时间、日期、货币、百分比)。

实际应用中,NER模型通常只要识别出人名、地名、组织机构名、日期时间即可,一些系统还会给出专有名词结果(比如缩写、会议名、产品名等)。货币、百分比等数字类实体可通过正则搞定。另外,在一些应用场景下会给出特定领域内的实体,如书名、歌曲名、期刊名等。

NER是NLP中一项基础性关键任务。从自然语言处理的流程来看,NER可以看作词法分析中未登录词识别的一种,是未登录词中数量最多、识别难度最大、对分词效果影响最大问题。同时NER也是关系抽取、事件抽取、知识图谱、机器翻译、问答系统等诸多NLP任务的基础。

NER当前并不算是一个大热的研究课题,因为学术界部分学者认为这是一个已经解决的问题。当然也有学者认为这个问题还没有得到很好地解决,原因主要有:命名实体识别只是在有限的文本类型(主要是新闻语料中)和实体类别(主要是人名、地名、组织机构名)中取得了不错的效果;与其他信息检索领域相比,实体命名评测预料较小,容易产生过拟合;命名实体识别更侧重高召回率,但在信息检索领域,高准确率更重要;通用的识别多种类型的命名实体的系统性能很差。

2. 深度学习方法在NER中的应用

NER一直是NLP领域中的研究热点,从早期基于词典和规则的方法,到传统机器学习的方法,到近年来基于深度学习的方法,NER研究进展的大概趋势大致如下图所示。

图1:NER发展趋势

在基于机器学习的方法中,NER被当作序列标注问题。利用大规模语料来学习出标注模型,从而对句子的各个位置进行标注。NER 任务中的常用模型包括生成式模型HMM、判别式模型CRF等。条件随机场(ConditionalRandom Field,CRF)是NER目前的主流模型。它的目标函数不仅考虑输入的状态特征函数,而且还包含了标签转移特征函数。在训练时可以使用SGD学习模型参数。在已知模型时,给输入序列求预测输出序列即求使目标函数最大化的最优序列,是一个动态规划问题,可以使用Viterbi算法解码来得到最优标签序列。CRF的优点在于其为一个位置进行标注的过程中可以利用丰富的内部及上下文特征信息。

图2:一种线性链条件随机场

近年来,随着硬件计算能力的发展以及词的分布式表示(word embedding)的提出,神经网络可以有效处理许多NLP任务。这类方法对于序列标注任务(如CWS、POS、NER)的处理方式是类似的:将token从离散one-hot表示映射到低维空间中成为稠密的embedding,随后将句子的embedding序列输入到RNN中,用神经网络自动提取特征,Softmax来预测每个token的标签。

这种方法使得模型的训练成为一个端到端的过程,而非传统的pipeline,不依赖于特征工程,是一种数据驱动的方法,但网络种类繁多、对参数设置依赖大,模型可解释性差。此外,这种方法的一个缺点是对每个token打标签的过程是独立的进行,不能直接利用上文已经预测的标签(只能靠隐含状态传递上文信息),进而导致预测出的标签序列可能是无效的,例如标签I-PER后面是不可能紧跟着B-PER的,但Softmax不会利用到这个信息。

学界提出了DL-CRF模型做序列标注。在神经网络的输出层接入CRF层(重点是利用标签转移概率)来做句子级别的标签预测,使得标注过程不再是对各个token独立分类。

2.1 BiLSTM-CRF

LongShort Term Memory网络一般叫做LSTM,是RNN的一种特殊类型,可以学习长距离依赖信息。LSTM 由Hochreiter &Schmidhuber (1997)提出,并在近期被Alex Graves进行了改良和推广。在很多问题上,LSTM 都取得了相当巨大的成功,并得到了广泛的使用。LSTM 通过巧妙的设计来解决长距离依赖问题。

所有 RNN 都具有一种重复神经网络单元的链式形式。在标准的RNN中,这个重复的单元只有一个非常简单的结构,例如一个tanh层。

图3:传统RNN结构

LSTM 同样是这样的结构,但是重复的单元拥有一个不同的结构。不同于普通RNN单元,这里是有四个,以一种非常特殊的方式进行交互。

图4:LSTM结构

LSTM通过三个门结构(输入门,遗忘门,输出门),选择性地遗忘部分历史信息,加入部分当前输入信息,最终整合到当前状态并产生输出状态。

图5:LSTM各个门控结构

应用于NER中的biLSTM-CRF模型主要由Embedding层(主要有词向量,字向量以及一些额外特征),双向LSTM层,以及最后的CRF层构成。实验结果表明biLSTM-CRF已经达到或者超过了基于丰富特征的CRF模型,成为目前基于深度学习的NER方法中的最主流模型。在特征方面,该模型继承了深度学习方法的优势,无需特征工程,使用词向量以及字符向量就可以达到很好的效果,如果有高质量的词典特征,能够进一步获得提高。

图6:biLSTM-CRF结构示意图

2.2 IDCNN-CRF

对于序列标注来讲,普通CNN有一个不足,就是卷积之后,末层神经元可能只是得到了原始输入数据中一小块的信息。而对NER来讲,整个输入句子中每个字都有可能对当前位置的标注产生影响,即所谓的长距离依赖问题。为了覆盖到全部的输入信息就需要加入更多的卷积层,导致层数越来越深,参数越来越多。而为了防止过拟合又要加入更多的Dropout之类的正则化,带来更多的超参数,整个模型变得庞大且难以训练。因为CNN这样的劣势,对于大部分序列标注问题人们还是选择biLSTM之类的网络结构,尽可能利用网络的记忆力记住全句的信息来对当前字做标注。

但这又带来另外一个问题,biLSTM本质是一个序列模型,在对GPU并行计算的利用上不如CNN那么强大。如何能够像CNN那样给GPU提供一个火力全开的战场,而又像LSTM这样用简单的结构记住尽可能多的输入信息呢?

Fisher Yu and Vladlen Koltun 2015 提出了dilated CNN模型,意思是“膨胀的”CNN。其想法并不复杂:正常CNN的filter,都是作用在输入矩阵一片连续的区域上,不断sliding做卷积。dilated CNN为这个filter增加了一个dilation width,作用在输入矩阵的时候,会skip所有dilation width中间的输入数据;而filter本身的大小保持不变,这样filter获取到了更广阔的输入矩阵上的数据,看上去就像是“膨胀”了一般。

具体使用时,dilated width会随着层数的增加而指数增加。这样随着层数的增加,参数数量是线性增加的,而receptive field却是指数增加的,可以很快覆盖到全部的输入数据。

图7:idcnn示意图

图7中可见感受域是以指数速率扩大的。原始感受域是位于中心点的1x1区域:

(a)图中经由原始感受域按步长为1向外扩散,得到8个1x1的区域构成新的感受域,大小为3x3;

(b)图中经过步长为2的扩散,上一步3x3的感受域扩展为为7x7;

(c)图中经步长为4的扩散,原7x7的感受域扩大为15x15的感受域。每一层的参数数量是相互独立的。感受域呈指数扩大,但参数数量呈线性增加。

对应在文本上,输入是一个一维的向量,每个元素是一个character embedding:

图8:一个最大膨胀步长为4的idcnn块

IDCNN对输入句子的每一个字生成一个logits,这里就和biLSTM模型输出logits完全一样,加入CRF层,用Viterbi算法解码出标注结果。

在biLSTM或者IDCNN这样的网络模型末端接上CRF层是序列标注的一个很常见的方法。biLSTM或者IDCNN计算出的是每个词的各标签概率,而CRF层引入序列的转移概率,最终计算出loss反馈回网络。

3. 实战应用

3.1 语料准备

Embedding:我们选择中文维基百科语料来训练字向量和词向量。

基础语料:选择人民日报1998年标注语料作为基础训练语料。

附加语料:98语料作为官方语料,其权威性与标注正确率是有保障的。但由于其完全取自人民日报,而且时间久远,所以对实体类型覆盖度比较低。比如新的公司名,外国人名,外国地名。为了提升对新类型实体的识别能力,我们收集了一批标注的新闻语料。主要包括财经、娱乐、体育,而这些正是98语料中比较缺少的。由于标注质量问题,额外语料不能加太多,约98语料的1/4。

3.2 数据增强

对于深度学习方法,一般需要大量标注语料,否则极易出现过拟合,无法达到预期的泛化能力。我们在实验中发现,通过数据增强可以明显提升模型性能。具体地,我们对原语料进行分句,然后随机地对各个句子进行bigram、trigram拼接,最后与原始句子一起作为训练语料。

另外,我们利用收集到的命名实体词典,采用随机替换的方式,用其替换语料中同类型的实体,得到增强语料。

下图给出了BiLSTM-CRF模型的训练曲线,可以看出收敛是很缓慢的。相对而言,IDCNN-CRF模型的收敛则快很多。

图9:BiLSTM-CRF的训练曲线

图10:IDCNN-CRF的训练曲线

3.3 实例

以下是用BiLSTM-CRF模型的一个实例预测结果。

图11:BiLSTM-CRF预测实例

4. 总结

最后进行一下总结,将神经网络与CRF模型相结合的CNN/RNN-CRF成为了目前NER的主流模型。对于CNN与RNN,并没有谁占据绝对优势,各有各的优点。由于RNN有天然的序列结构,所以RNN-CRF使用更为广泛。基于神经网络结构的NER方法,继承了深度学习方法的优点,无需大量人工特征。只需词向量和字向量就能达到主流水平,加入高质量的词典特征能够进一步提升效果。对于少量标注训练集问题,迁移学习,半监督学习应该是未来研究的重点。

ABOUT

88集团赠送38彩金作者

朱耀邦:达观数据NLP算法工程师,负责达观数据NLP基础模块的研究、优化,以及NLP算法在文本挖掘系统中的具体应用。对深度学习、序列标注、实体及关系抽取有浓厚兴趣。

达观数据曾彦能:如何用深度学习做好长文本分类与法律文书智能化处理

Deep Learning Specialization on Coursera

在NLP领域中,文本分类舆情分析等任务相较于文本抽取,和摘要等任务更容易获得大量标注数据。因此在文本分类领域中深度学习相较于传统方法更容易获得比较好的效果。正是有了文本分类模型的快速演进,海量的法律文书可以通过智能化处理来极大地提高效率。我们今天就来分析一下当前state of art的文本分类模型以及他们在法律文书智能化中的应用。

文本分类领域走过路过不可错过的深度学习模型主要有FastText,TextCNN,HAN,DPCNN。本文试图在实践之后总结一下这些这些分类模型的理论框架,把这些模型相互联系起来,让大家在选择模型与调参的时候能有一些直觉与灵感。在深度学习这个实践为王的领域常有人质疑理论理论无用,我个人的感受是理论首先在根据数据特征筛选模型的时候非常有用,其次在调参的过程中也能大幅提升效率,更重要的是调不出结果的时候,往往脑海里的那一句“这个模型不应该是这样的结果”,以及“这不科学”提供了坚持方向信心。

一、文本分类模型详解

1. FastText

其中FastText结构特别简单,对于速度要求特别高场合适用,他把一篇文章中所有的词向量(还可以加上N-gram向量)直接相加求均值,然后过一个单层神经网络来得出最后的分类结果。很显然,这样的做法对于复杂的文本分类任务来说丢失了太多的信息。FastText的一种简单的增强模型是DAN,改变在于在词向量平均完成后多叠了几层全连接神经网络。对应地,FastText也可以看成是DAN全连接神经网络层数为1的的一种特例。

图1 2层DAN网络

需要特别注意的是,对于不加n-gram向量的FastText模型,他不可能去分辨否定词的位置,看下面的两句话:

我不喜欢这类电影,但是喜欢这一个。

我喜欢这类电影,但是不喜欢这一个。

这样的两句句子经过词向量平均以后已经送入单层神经网络的时候已经完全一模一样了,分类器不可能分辨出这两句话的区别,只有添加n-gram特征以后才可能有区别。因此,在实际应用的时候需要对你的数据有足够的了解。

2. TextCNN

TextCNN相较于fastText模型的结构会复杂一些,在2014年提出,他使用了卷积 + 最大池化这两个在图像领域非常成功的好基友组合。我们先看一下他的结构。如下图所示,示意图中第一层输入为7*5的词向量矩阵,其中词向量维度为5,句子长度为7,然后第二层使用了3组宽度分别为2、3、4的卷积核,图中每种宽度的卷积核使用了两个。

其中每个卷积核在整个句子长度上滑动,得到n个激活值,图中卷积核滑动的过程中没有使用padding,因此宽度为4的卷积核在长度为7的句子上滑动得到4个特征值。然后出场的就是卷积的好基友全局池化了,每一个卷积核输出的特征值列向量通过在整个句子长度上取最大值得到了6个特征值组成的feature map来供后级分类器作为分类的依据。

图2 TextCNN结构

我们知道图像处理中卷积的作用是在整幅图像中计算各个局部区域与卷积核的相似度,一般前几层的卷积核是可以很方便地做可视化的,可视化的结果是前几层的卷积核是在原始输入图像中寻找一些简单的线条。NLP中的卷积核没法做可视化,那么是不是就不能理解他在做什么了呢,其实可以通过模型的结构来来推断他的作用。因为TextCNN中卷积过后直接就是全局max pooling,那么它只能是在卷积的过程中计算与某些关键词的相似度,然后通过max pooling层来得出模型关注那些关键词是否在整个输入文本中出现,以及最相似的关键词与卷积核的相似度最大有多大。我们假设中文输出为字向量,理想情况下一个卷积核代表一个关键词,如下图所示:

图3 TextCNN卷积核的意义示意图

比如说一个2分类舆情分析任务中,如果把整个模型当成一个黑箱,那么去检测他的输出结果,会发现这个模型对于输入文本中是否含有“喜欢”,“热爱”这样的词特别敏感,那么他是怎么做到的呢?整个模型中能够做到遍历整个句子去计算关键词相似度的只有卷积的部分,因为后面直接是对整个句子长度的max pooling。但是因为模型面对的是字向量,并不是字,所以他一个卷积核可能是只学了半个关键词词向量,然后还有另外的卷积核学了另外半个关键词词向量,最后在分类器的地方这些特征值被累加得到了最终的结果。

TextCNN模型最大的问题也是这个全局的max pooling丢失了结构信息,因此很难去发现文本中的转折关系等复杂模式,TextCNN只能知道哪些关键词是否在文本中出现了,以及相似度强度分布,而不可能知道哪些关键词出现了几次以及出现这些关键词出现顺序。假想一下如果把这个中间结果给人来判断,人类也很难得到对于复杂文本的分类结果,所以机器显然也做不到。针对这个问题,可以尝试k-max pooling做一些优化,k-max pooling针对每个卷积核都不只保留最大的值,他保留前k个最大值,并且保留这些值出现的顺序,也即按照文本中的位置顺序来排列这k个最大值。在某些比较复杂的文本上相对于1-max pooling会有提升。

3. HAN(Hierarchy Attention Network)

相较于TextCNN,HAN最大的进步在于完全保留了文章的结构信息,并且特别难能可贵的是,基于attention结构有很强的解释性。

他的结构如下图所示:

图4 HAN结构

输入词向量序列后,通过词级别的Bi-GRU后,每个词都会有一个对应的Bi-GRU输出的隐向量h,再通过uw向量与每个时间步的h向量点积得到attention权重,然后把h序列做一个根据attention权重的加权和,得到句子summary向量s2,每个句子再通过同样的Bi-GRU结构再加attention得到最终输出的文档特征向量v向量,然后v向量通过后级dense层再加分类器得到最终的文本分类结果。模型结构非常符合人的从词->句子->再到篇章的理解过程。

最重要的是该模型在提供了更好的分类精度的情况下,可视化效果非常好。同时在调参过程中,我们发现attention部分对于模型的表达能力影响非常大,整个模型在所有位置调整L2-Loss对模型表达能力带来的影响远不如在两处attention的地方大,这同时也能解释为什么可视化效果比较好,因为attention对于模型的输出贡献很大,而attention又恰恰是可以可视化的。

下面我们来看一下他在法律领域罪名预测任务上的可视化效果。下面的可视化的结果并不是找了极少数效果好的,而是大部分情况下模型的可视化能够解释他的输出。需要注意的是,此处为了让不太重要句子中相对重要的词并不完全不可见,词的亮度=sqrt(句子权重)*词权重。

在非常长的文本中,HAN觉得中间那些完全是废话,不如那句“公诉机关认为”有用,就放弃了。

图5 HAN attention可视化1

如下图所示,模型虽然在文本第二行中看到了窃取的字样,但是他认为这个案件中主要的事件是抢劫,这就是保留文本结构的好处。

图6 HAN attention可视化2

可以看到并不是所有的深度学习模型都是不可以理解的,这种可解释性也会给实际应用带来很多帮助。

4 DPCNN

上面的几个模型,论神经网络的层数,都不深,大致就只有2~3层左右。大家都知道何凯明大神的ResNet是CV中的里程碑,15年参加ImageNet的时候top-5误差率相较于上一年的冠军GoogleNet直接降低了将近一半,证明了网络的深度是非常重要的。

图7 ImageNet历年冠军

那么问题来了,在文本分类领域网络深度提升会带来分类精度的大幅提升吗?我们在一些比较复杂的任务中,以及数据量比较大(百万级)的情况下有提升,但不是ResNet那种决定性的提升。

DPCNN的主要结构如下图所示:

图8 DPCNN结构

从词向量开始(本文的重点在于模型的大结构,因此不去详解文中的region embedding部分,直接将整个部分认为是一种词向量的输出。)先做了两次宽度为3,filter数量为250个的卷积,然后开始做两两相邻的max-pooling,假设输入句子长度padding到1024个词,那么在头两个卷积完成以后句子长度仍然为1024。在block 1的pooling位置,max pooling的width=3,stride=2,也即序列中相邻的3个时间步中每一维feature map取这三个位置中最大的一个留下,也即位置0,1,2中取一个最大值,然后,移动2个时间步,在2,3,4时间步中取一次max,那么pooling输出的序列长度就是511。

后面以此类推,序列长度是呈指数级下降的,这也是文章名字Deep Pyramid的由来。然后通过两个卷积的非线性变换,提取更深层次的特征,再在输出的地方叠加上未经过两次卷积的quick connection通路(ResNet中使得深层网络更容易训练的关键)。因为每个block中的max pooling只是相邻的两个位置做max-pooling,所以每次丢失的结构信息很少,后面的卷积层又能提取更加抽象的特征出来。所以最终模型可以在不丢失太多结构信息的情况下,同时又做了比较深层的非线性变换。

我们实际测试中在非线性度要求比较高的分类任务中DPCNN会比HAN精度高,并且由于他是基于CNN的,训练速度比基于GRU的HAN也要快很多。

二、法律文书智能化应用

达观数据在法律文书智能化处理中也应用了上面的几个模型,并在此基础上做法律行业针对性的优化。在刚刚结束的“法研杯”法律人工智能大赛中达观数据代表队取得了单项三等奖的成绩。

以裁判文书智能化处理为例,达观数据可以通过上述的文本分类器根据一段犯罪事实来向法律工作者推荐与描述的犯罪事实相关的罪名,法律条文,甚至是刑期的预测等。

下面以裁判文书网的一篇裁判文书为例,我们截取其中的犯罪事实部分文字,输入模型。模型会根据输入的文字判断此段分类事实对应的罪名,并且高亮出犯罪事实中的关键内容。

截取裁判文书网中的犯罪事实部分:

图9 裁判文书样例

输入模型:

“公诉机关指控:2017年6月30日22时左右,被告人耿艳峰醉酒驾驶冀T×××××号比亚迪小型轿车沿东孙庄村东水泥路由西向东行驶,行至事发处,与对向被告人孙汉斌无证醉酒驾驶无牌二轮摩托车发生碰撞。造成两车不同程度损坏,孙汉斌受伤的道路交通事故。经衡水市公安局物证鉴定所检验:耿艳峰血液酒精含量为283.11mg/lOOmL;孙汉斌血液酒精含量为95.75mg/mL。经武强县交通警察大队认定:耿艳峰、孙汉斌均负此事故的同等责任。”

得到结果:

图10 模型输出结果

模型会输出预测的罪名以及相关法条的推荐结果,能够极大地提高律师的效率。并且模型还能将关键的句子以及词高亮出来给律师进一步仔细审阅提供方便。

目前在刑法相关的大量样本上罪名预测与相关法条推荐的准确率在90%左右。刑期由于存在不同年代不同地区存在一些差异,目前模型的输出结果还不能特别直观地给出评估。

三、总结

目前state of the art的深度学习文本发分类模型在十万~百万级以上的数据上已经能取得相当不错的效果,并且也有一些可解释性非常强的模型可用。要在实际业务中把文本分类模型用好,除了像文中深入分析理论以外,在大量的业务实践中总结经验也是必不可少的。达观在裁判文书处理等实际任务上实测输出结果也非常不错,并且达观的深度学习文本分类技术也会在各个业务应用中不断优化升级,希望能为法律行业的智能化以及效率优化作出一些贡献。

参考文献:

1.Joulin, Armand, et al. "Bag of Tricks forEfficient Text Classification." Proceedings of the 15th Conferenceof the European Chapter of the Association for Computational Linguistics:Volume 2, Short Papers. Vol. 2. 2017.

2.Iyyer, Mohit, et al. "Deep unorderedcomposition rivals syntactic methods for text classification." Proceedingsof the 53rd Annual Meeting of the Association for Computational Linguistics andthe 7th International Joint Conference on Natural Language Processing (Volume1: Long Papers). Vol. 1. 2015.

3.Kim, Yoon. "Convolutional Neural Networksfor Sentence Classification." Proceedings of the 2014 Conferenceon Empirical Methods in Natural Language Processing (EMNLP). 2014.

4.Yang, Zichao, et al. "Hierarchicalattention networks for document classification." Proceedings of the2016 Conference of the North American Chapter of the Association forComputational Linguistics: Human Language Technologies. 2016.

5.Johnson, Rie, and Tong Zhang. "Deeppyramid convolutional neural networks for text categorization." Proceedingsof the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1: Long Papers). Vol. 1. 2017.

88集团赠送38彩金作者

曾彦能:达观数据NLP算法工程师,负责达观数据NLP深度学习算法的研究、优化,以及在文本挖掘系统中的具体应用。对文本分类,序列标注模型有深入的研究。曾作为主要成员之一代表达观数据参加2018中国"法研杯" 法律智能挑战赛获得单项三等奖。